56 research outputs found

    Space-by-Time Modular Decomposition Effectively Describes Whole-Body Muscle Activity During Upright Reaching in Various Directions

    Get PDF
    The modular control hypothesis suggests that motor commands are built from precoded modules whose specific combined recruitment can allow the performance of virtually any motor task. Despite considerable experimental support, this hypothesis remains tentative as classical findings of reduced dimensionality in muscle activity may also result from other constraints (biomechanical couplings, data averaging or low dimensionality of motor tasks). Here we assessed the effectiveness of modularity in describing muscle activity in a comprehensive experiment comprising 72 distinct point-to-point whole-body movements during which the activity of 30 muscles was recorded. To identify invariant modules of a temporal and spatial nature, we used a space-by-time decomposition of muscle activity that has been shown to encompass classical modularity models. To examine the decompositions, we focused not only on the amount of variance they explained but also on whether the task performed on each trial could be decoded from the single-trial activations of modules. For the sake of comparison, we confronted these scores to the scores obtained from alternative non-modular descriptions of the muscle data. We found that the space-by-time decomposition was effective in terms of data approximation and task discrimination at comparable reduction of dimensionality. These findings show that few spatial and temporal modules give a compact yet approximate representation of muscle patterns carrying nearly all task-relevant information for a variety of whole-body reaching movements

    VELOCITY-DEPENDENT TUNING OF MOTOR STRATEGY DURING 3D ARM MOVEMENT AND ITS RELATIONSHIP TO COMPOSITE COST FUNCTIONS

    Get PDF
    The purpose of this study was to investigate the link between composite cost functions, within the framework of optimal control, and the velocity-dependent tuning of motor strategy observed during the control of unconstrained 3D arm movements. We considered an arm pointing task at three different speeds. Experimental results indicated a change of rotation axis for most subjects from the geometrical shoulder-elbow (SE) axis toward the minimum principal inertia (e3) axis as velocity increased. These findings were interpreted based on a numerical inverse optimal control approach, assuming a total cost composed of kinematic, energetic and dynamic elements. While the kinematic cost predominated at low speed, the contribution of energetic/dynamic costs was reinforced for speeded movements, likely to exploit the inertial properties of the arm

    Open-loop stochastic optimal control of a passive noiserejection variable stiffness actuator: Application to unstable tasks

    Get PDF
    Abstract-In this paper we propose a methodology to control a novel class of actuators that we called passive noise rejection variable stiffness actuators (pnrVSA). Differently from nowadays classical VSA designs, this novel class of actuators mimics the human musculoskeletal ability to increase noise rejection without relying on feedback. To fully highlight the potentialities behind these actuators we consider movement planning under two constraints: (1) absence of feedback, i.e. purely open-loop planning 1 ; (2) uncertain dynamic model. Under these constraints, movement planning can be formalized as an open-loop stochastic optimal control. Due to the lack of classical methods forcing the open-loop nature of the computed solution, we used here a slight modification of available methodologies based on importance sampling of trajectories using forward diffusion processes. Simulations show that the proposed algorithm can be effectively used to plan open-loop movements with pnrVSA. In particular, two different scenarios are considered: the control of a single joint pnrVSA and the control of a two degrees of freedom planar arm equipped with antagonist pnrVSAs at each joint. In both cases, movement has to be planned in presence of uncertain dynamics for unstable tasks. It is shown that open-loop stochastic optimal control can modulate the intrinsic stiffness of the system to cope with both instability and noise

    From humans to humanoids: The optimal control framework

    Get PDF
    AbstractIn the last years of research in cognitive control, neuroscience and humanoid robotics have converged to different frameworks which aim, on one side, at modeling and analyzing human motion, and, on the other side, at enhancing motor abilities of humanoids. In this paper we try to cover the gap between the two areas, giving an overview of the literature in the two fields which concerns the production of movements. First, we survey computational motor control models based on optimality principles; then, we review available implementations and techniques to transfer these principles to humanoid robots, with a focus on the limitations and possible improvements of the current implementations. Moreover, we propose Stochastic Optimal Control as a framework to take into account delays and noise, thus catching the unpredictability aspects typical of both humans and humanoids systems. Optimal Control in general can also easily be integrated with Machine Learning frameworks, thus resulting in a computational implementation of human motor learning. This survey is mainly addressed to roboticists attempting to implement human-inspired controllers on robots, but can also be of interest for researchers in other fields, such as computational motor control

    Human movement modifications induced by different levels of transparency of an active upper limb exoskeleton

    Get PDF
    Active upper limb exoskeletons are a potentially powerful tool for neuromotor rehabilitation. This potential depends on several basic control modes, one of them being transparency. In this control mode, the exoskeleton must follow the human movement without altering it, which theoretically implies null interaction efforts. Reaching high, albeit imperfect, levels of transparency requires both an adequate control method and an in-depth evaluation of the impacts of the exoskeleton on human movement. The present paper introduces such an evaluation for three different “transparent” controllers either based on an identification of the dynamics of the exoskeleton, or on force feedback control or on their combination. Therefore, these controllers are likely to induce clearly different levels of transparency by design. The conducted investigations could allow to better understand how humans adapt to transparent controllers, which are necessarily imperfect. A group of fourteen participants were subjected to these three controllers while performing reaching movements in a parasagittal plane. The subsequent analyses were conducted in terms of interaction efforts, kinematics, electromyographic signals and ergonomic feedback questionnaires. Results showed that, when subjected to less performing transparent controllers, participants strategies tended to induce relatively high interaction efforts, with higher muscle activity, which resulted in a small sensitivity of kinematic metrics. In other words, very different residual interaction efforts do not necessarily induce very different movement kinematics. Such a behavior could be explained by a natural human tendency to expend effort to preserve their preferred kinematics, which should be taken into account in future transparent controllers evaluation

    An Ensemble Analysis of Electromyographic Activity during Whole Body Pointing with the Use of Support Vector Machines

    Get PDF
    We explored the use of support vector machines (SVM) in order to analyze the ensemble activities of 24 postural and focal muscles recorded during a whole body pointing task. Because of the large number of variables involved in motor control studies, such multivariate methods have much to offer over the standard univariate techniques that are currently employed in the field to detect modifications. The SVM was used to uncover the principle differences underlying several variations of the task. Five variants of the task were used. An unconstrained reaching, two constrained at the focal level and two at the postural level. Using the electromyographic (EMG) data, the SVM proved capable of distinguishing all the unconstrained from the constrained conditions with a success of approximately 80% or above. In all cases, including those with focal constraints, the collective postural muscle EMGs were as good as or better than those from focal muscles for discriminating between conditions. This was unexpected especially in the case with focal constraints. In trying to rank the importance of particular features of the postural EMGs we found the maximum amplitude rather than the moment at which it occurred to be more discriminative. A classification using the muscles one at a time permitted us to identify some of the postural muscles that are significantly altered between conditions. In this case, the use of a multivariate method also permitted the use of the entire muscle EMG waveform rather than the difficult process of defining and extracting any particular variable. The best accuracy was obtained from muscles of the leg rather than from the trunk. By identifying the features that are important in discrimination, the use of the SVM permitted us to identify some of the features that are adapted when constraints are placed on a complex motor task

    The Inactivation Principle: Mathematical Solutions Minimizing the Absolute Work and Biological Implications for the Planning of Arm Movements

    Get PDF
    An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecting the mechanical energy expenditure. Contrary to most investigations studying optimality principles of arm movements, this model has the particularity of using a cost function that is not smooth. First, a mathematical theory related to both direct and inverse optimal control approaches is presented. The first theoretical result is the Inactivation Principle, according to which minimizing a term similar to the absolute work implies simultaneous inactivation of agonistic and antagonistic muscles acting on a single joint, near the time of peak velocity. The second theoretical result is that, conversely, the presence of non-smoothness in the cost function is a necessary condition for the existence of such inactivation. Second, during an experimental study, participants were asked to perform fast vertical arm movements with one, two, and three degrees of freedom. Observed trajectories, velocity profiles, and final postures were accurately simulated by the model. In accordance, electromyographic signals showed brief simultaneous inactivation of opposing muscles during movements. Thus, assuming that human movements are optimal with respect to a certain integral cost, the minimization of an absolute-work-like cost is supported by experimental observations. Such types of optimality criteria may be applied to a large range of biological movements

    Evidence for Composite Cost Functions in Arm Movement Planning: An Inverse Optimal Control Approach

    Get PDF
    An important issue in motor control is understanding the basic principles underlying the accomplishment of natural movements. According to optimal control theory, the problem can be stated in these terms: what cost function do we optimize to coordinate the many more degrees of freedom than necessary to fulfill a specific motor goal? This question has not received a final answer yet, since what is optimized partly depends on the requirements of the task. Many cost functions were proposed in the past, and most of them were found to be in agreement with experimental data. Therefore, the actual principles on which the brain relies to achieve a certain motor behavior are still unclear. Existing results might suggest that movements are not the results of the minimization of single but rather of composite cost functions. In order to better clarify this last point, we consider an innovative experimental paradigm characterized by arm reaching with target redundancy. Within this framework, we make use of an inverse optimal control technique to automatically infer the (combination of) optimality criteria that best fit the experimental data. Results show that the subjects exhibited a consistent behavior during each experimental condition, even though the target point was not prescribed in advance. Inverse and direct optimal control together reveal that the average arm trajectories were best replicated when optimizing the combination of two cost functions, nominally a mix between the absolute work of torques and the integrated squared joint acceleration. Our results thus support the cost combination hypothesis and demonstrate that the recorded movements were closely linked to the combination of two complementary functions related to mechanical energy expenditure and joint-level smoothness
    corecore